基于均值-方差模型的P2P债权投资策略与风险度量问题研究

被引:9
作者
傅毅 [1 ]
张寄洲 [1 ]
周翠 [2 ]
机构
[1] 上海师范大学商学院
[2] 上海师范大学数理学院
关键词
投资策略; P2P债权; 均值-方差模型; 互联网金融;
D O I
10.14120/j.cnki.cn11-5057/f.2017.06.008
中图分类号
F224 [经济数学方法]; F724.6 [电子贸易、网上贸易]; F832.4 [信贷];
学科分类号
0701 ; 070104 ; 1201 ; 020204 ;
摘要
2015年1月31日,全国首个P2P跨平台债权转让系统"投之家"的二级市场上线,这迅速使得P2P债权投资成为了业界与学术界的热门话题。本文考虑投资者同时持有风险资产和P2P债权,将投资者日常的现金流假设为泊松过程,应用随机控制方法建立了P2P债权投资的均值-方差模型,运用动态规划原理得到了模型对应的HJB方程,并解得HJB方程的最优投资策略和风险度量显式解。最后本文通过数值模拟分析了不同参数对模型结果的影响。
引用
收藏
页码:19 / 28
页数:10
相关论文
共 12 条
[1]   互联网产业发展影响因素的实证分析 [J].
何菊香 ;
赖世茜 ;
廖小伟 .
管理评论, 2015, 27 (01) :138-147
[2]   P2P借贷出借人的羊群行为及其理性检验——基于拍拍贷的实证研究 [J].
曾江洪 ;
杨帅 .
现代财经(天津财经大学学报), 2014, 34 (07) :22-32
[3]   Instance-based credit risk assessment for investment decisions in P2P lending [J].
Guo, Yanhong ;
Zhou, Wenjun ;
Luo, Chunyu ;
Liu, Chuanren ;
Xiong, Hui .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2016, 249 (02) :417-426
[4]  
Optimal investment–reinsurance with delay for mean–variance insurers: A maximum principle approach[J] . Yang Shen,Yan Zeng. Insurance Mathematics and Economics . 2014
[5]  
Continuous time mean‐variance optimal portfolio allocation under jump diffusion: An numerical impulse control approach[J] . Duy‐Minh Dang,Peter A. Forsyth. Numer. Methods Partial Differential Eq. . 2014 (2)
[6]  
MEAN–VARIANCE PORTFOLIO OPTIMIZATION WITH STATE‐DEPENDENT RISK AVERSION[J] . Tomas Bj?rk,Agatha Murgoci,Xun Yu Zhou. An International Journal of Mathematics, Statistics and Financial Economics . 2014 (1)
[7]  
Judging Borrowers by the Company They Keep: Friendship Networks and Information Asymmetry in Online Peer-to-Peer Lending[J] . Mingfeng Lin,Nagpurnanand R. Prabhala,Siva Viswanathan. Management Science . 2013 (1)
[8]  
Herding behavior in online P2P lending: An empirical investigation[J] . Eunkyoung Lee,Byungtae Lee. Electronic Commerce Research and Applications . 2012 (5)
[9]   Optimal time-consistent investment and reinsurance policies for mean-variance insurers [J].
Zeng, Yan ;
Li, Zhongfei .
INSURANCE MATHEMATICS & ECONOMICS, 2011, 49 (01) :145-154
[10]  
A Hamilton–Jacobi–Bellman approach to optimal trade execution[J] . Peter A. Forsyth. Applied Numerical Mathematics . 2010 (2)