当前基于协作过滤(CF,Collaborative Filtering)的推荐系统广泛应用于在线购物、音乐点播、智能Web推荐等系统。基于协作过滤的Web推荐系统的一个问题是用户通常仅仅访问很少Web页,因此根据用户访问Web页的记录找到一组相似用户的概率很低,这就是"稀疏问题"。本文提出了一种利用WWW冲浪模型,模仿用户访问Web页过程中的一些特点,并将用户的冲浪过程延续,模拟用户在Web站点访问更多的Web页,从而估计出用户对更多Web页的评价。本文还给出了实验比较,表明扩展冲浪深度后,系统推荐Web页的效果得到明显提高。