非线性极大极小系统全局优化算法的分析

被引:3
作者
李坤杰 [1 ]
陶跃钢 [1 ]
刘国平 [2 ]
机构
[1] 中国科学院自动化研究所复杂系统与智能科学实验室
[2] University of Glamorgan
关键词
非线性极大极小系统; 全局优化; 算法分析;
D O I
暂无
中图分类号
O224 [最优化的数学理论];
学科分类号
070105 ; 1201 ;
摘要
非线性极大极小系统的全局优化可用于柔性制造和智能交通的决策与控制.实现了非线性极大极小系统的全局优化算法的仿真,并进行了计算时间分析.数值实验表明了全局优化算法的可行性.算法的计算时间主要由系统的优化极大射影矩阵数目决定,而优化极大射影矩阵数目与系统解析式中单极大式的系数紧密相关,系数取值越分散,简约极大射影矩阵的效果越好,计算效率越高.
引用
收藏
页码:127 / 133
页数:7
相关论文
共 19 条
[1]  
The duality theorem for min-max functions. Gaubrrt S,Gunawardana J. Comptes Rendus Academy ofSciences . 1998
[2]  
Combinatorial and Global Optimization. Pardalos P M,Migdalas A,Burkard R. . 2002
[3]  
Introduction to Discrete Event Systems. Cassandras C G,Lafortune S. . 1999
[4]  
Globally optimal solutions of max-min systems. Tao Y,Liu G P,Chen W. Journal of Global Optimization . 2007
[5]  
Eigenvalues of dynamic max-min systems[J] . Geert Jan Olsder. &nbspDiscrete Event Dynamic Systems . 1991 (2)
[6]  
Min-max functions[J] . Jeremy Gunawardena. &nbspDiscrete Event Dynamic Systems: Theory and Applications . 1994 (4)
[7]  
Generalized Convex Disjunctive Programming: Nonlinear Convex Hull Relaxation[J] . Ignacio E. Grossmann,Sangbum Lee. &nbspComputational Optimization and Applications . 2003 (1)
[8]  
Globally optimal solutions of max–min systems[J] . Yuegang Tao,Guo-Ping Liu,Wende Chen. &nbspJournal of Global Optimization . 2007 (3)
[9]  
On minimal realization of SISO DEDS over max algebra. Wang L,Xu X. Proceedings of the 2ndEuropeanControl Conference . 1993
[10]  
Minimal Realization in Linear Systems of the Max-algebra. Tu F S. Proc of Chinese Control and DecisionConf . 1992