使用BP神经网络缓解协同过滤推荐算法的稀疏性问题

被引:83
作者
张锋
常会友
机构
[1] 中山大学信息科学与技术学院
基金
广东省自然科学基金;
关键词
电子商务; 数据挖掘; 推荐系统; 协同过滤; BP神经网络; 算法;
D O I
暂无
中图分类号
TP183 [人工神经网络与计算];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
推荐质量低是协同过滤推荐技术面临的主要难题之一.数据集的极端稀疏是造成推荐质量低的主要原因之一.常见的降维法和智能Agent法虽然某种程度上能缓解这个问题,但会导致信息损失和适应性等问题.设计了一个新的协同过滤算法,根据用户评分向量交集大小选择候选最近邻居集,采用BP神经网络预测用户对项的评分,减小候选最近邻数据集的稀疏性.该算法避免了降维法和智能Agent法的缺点,而且实验结果表明,该方法能提高预测值的准确度,从而提高协同过滤推荐系统的推荐质量.
引用
收藏
页码:667 / 672
页数:6
相关论文
共 2 条
[1]   个性化推荐算法设计 [J].
赵亮 ;
胡乃静 ;
张守志 .
计算机研究与发展, 2002, (08) :986-991
[2]  
Eigentaste: A Constant Time Collaborative Filtering Algorithm[J] . Ken Goldberg,Theresa Roeder,Dhruv Gupta,Chris Perkins.Information Retrieval . 2001 (2)