一个新的模糊免赔契约模型

被引:2
作者
宋庆凤 [1 ]
王皎云 [1 ]
石凯 [2 ]
机构
[1] 天津城建大学理学院
[2] 天津理工大学计算机与通信工程学院
关键词
契约; 免赔; 信息不对称; 最优控制; 模糊变量;
D O I
暂无
中图分类号
F224 [经济数学方法]; F840.4 [保险业务];
学科分类号
0701 ; 070104 ; 120404 ; 020204 ;
摘要
论文从保险人期望福利最大化角度研究了不确定环境下的免赔契约设计问题.将保险人关于投保人私人信息的主观判断刻画为模糊变量,将契约设计为状态依赖的二维向量:保费变量和免赔额变量,建立了一个新的模糊免赔契约模型,给出了所建模型的等价模型及最优契约的充分条件,基于最优控制理论给出了最优契约存在的一个必要条件,数值算例验证了模型的有效性.
引用
收藏
页码:2645 / 2649
页数:5
相关论文
共 13 条
[1]  
变分法基础[M]. 国防工业出版社 , 老大中编著, 2004
[2]   A fuzzy waiting time contract for patient's public health care [J].
Song, Qingfeng ;
Shi, Kai .
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2014, 27 (02) :1001-1009
[3]   An uncertain price discrimination model in labor market [J].
Wang, Guoli ;
Tang, Wansheng ;
Zhao, Ruiqing .
SOFT COMPUTING, 2013, 17 (04) :579-585
[4]   An uncertain contract model for rural migrant worker's employment problems [J].
Mu, Rui ;
Lan, Yanfei ;
Tang, Wansheng .
FUZZY OPTIMIZATION AND DECISION MAKING, 2013, 12 (01) :29-39
[5]  
Effects of insurance premium and deductible on production[J] . Li-Hua Lai.Nonlinear Analysis: Real World Applications . 2010 (3)
[6]  
MODELING IMPERFECT KNOWLEDGE IN RISK MANAGEMENT AND INSURANCE[J] . MarkJablonowski.Risk Management and Insurance Review . 2009 (1)
[7]  
The expected value of a function of a fuzzy variable with a continuous membership function[J] . Feng Xue,Wansheng Tang,Ruiqing Zhao.Computers and Mathematics with Applications . 2007 (6)
[8]  
Optimal insurance under the insurer’s risk constraint[J] . Chunyang Zhou,Chongfeng Wu.Insurance Mathematics and Economics . 2007 (3)
[9]  
Optimal health insurance contract: Is a deductible useful?[J] . David Bardey,Romain Lesur.Economics Letters . 2005 (3)
[10]  
Asymmetric Information and Learning: Evidence from the Automobile Insurance Market[J] . Alma Cohen.Review of Economics and Statistics . 2005 (2)