我国证券市场风险波动性预测:基于沪深300指数的比较研究

被引:2
作者
陈德华 [1 ]
石建民 [2 ]
机构
[1] 宜宾学院
[2] 海通证券公司
关键词
波动率预测; 指数加权移动平均; 异方差自回归; 随机波动率;
D O I
10.19374/j.cnki.14-1145/f.2009.04.014
中图分类号
F832.51 []; F224 [经济数学方法];
学科分类号
1201 ; 020204 ; 0701 ; 070104 ;
摘要
股市的价格或收益虽然不可预测,但收益的波动性却在一定程度上具有可预测性。波动性预测并不能像收益预测那样带来直接的盈利机会,但它对投资者判断市场风险状况从而更有效地进行资产定价、制定交易策略、构建投资组合和风险控制具有重要意义。我们通过沪深300指数的实证分析,证实我国证券市场波动率在一定程度上具有可预测性,模型的预测都能超越随机游走。但模型的复杂程度未能提高模型的预测能力,简单的指数移动平均模型和异方差自回归模型不仅不差于其他模型,反而具有更佳预测效果。当然上述结论仅限于所选样本,是否具有普遍性有待进一步研究。
引用
收藏
页码:36 / 38+35 +35
页数:4
相关论文
共 40 条
[1]  
Autoregressive conditional heteroscedasticity with estimates of the variance of UK inflation. Engle R F. Econometrica . 1982
[2]  
The distribution of realized stock return volatility. Andersen,TG,Bollerslev,T,Diebold,FX,Ebens,H. J Financ Econ . 2001
[3]  
The Day of the Week Effect on Stock Market Volatility. Berument,H,Kiymaz,H. Journal of Economics and Finance . 2001
[4]  
Storage.Weather and Dynamics of Natural GasPrices in Futures and Spot Markets. Ates A,G H.K Wang. . 2005
[5]  
Modeling financial time series. Taylor S J. . 1986
[6]  
Volatility Storage and Convenience:Evidencefrom Natural Gas Markets. Susmel R,A Thompson. Journal of Futures Markets . 1997
[7]   The day of the week effect on stock market volatility [J].
Berument H. ;
Kiymaz H. .
Journal of Economics and Finance, 2001, 25 (2) :181-193
[8]  
ARCH modelling in finance: a review of the theory and empirical evidence. Bollerslev T,Chou R,Kroner K. Journal of Econometrics . 1992
[9]  
How markets process information: news releases and volatility. Ederington,Louis,Lee,Jae Ha. The Journal of Finance . 1993
[10]  
Alternative models for conditional stock volatility. Pagan A R,Schwert G W. Journal of Econometrics . 1990