共 23 条
电力用户侧大数据分析与并行负荷预测
被引:264
作者:
王德文
孙志伟
机构:
[1] 华北电力大学控制与计算机工程学院
来源:
基金:
中央高校基本科研业务费专项资金资助;
关键词:
大数据;
电力用户侧;
负荷预测;
并行处理;
云计算;
D O I:
10.13334/j.0258-8013.pcsee.2015.03.004
中图分类号:
TM715 [电力系统规划];
学科分类号:
080802 ;
摘要:
随着智能电网、通信网络技术和传感器技术的发展,电力用户侧数据呈指数级增长、复杂程度增大,逐步构成了用户侧大数据。传统的数据分析模式已无法满足需求,迫切需要解决电力用户侧的大数据在分析与处理方面的难题。该文分析电力用户大数据的来源,针对电力用户侧大数据的数据量大、种类繁多与速度快等特点,指出电力用户侧的大数据在数据存储、可用性、处理等方面面临的挑战。结合云计算技术提出一种电力用户侧大数据分析处理平台,将智能电表、SCADA系统和各种传感器中采集的数据整合,并利用并行化计算模型Map Reduce与内存并行化计算框架Spark对电力用户侧的大数据进行分析。提出基于随机森林算法的并行负荷预测方法,将随机森林算法进行并行化,对历史负荷、温度、风速等数据进行并行化分析,缩短负荷预测时间和提高随机森林算法对大数据的处理能力。设计并实现基于Hadoop的电力用户侧大数据并行负荷预测原型系统,包括数据集群的管理、数据管理、预测分类算法库等功能。采用不同大小的数据集对并行化随机森林算法进行负荷预测实验,实验结果表明,并行化随机森林算法的预测精度明显高于决策树的预测精度,且在不同数据集上预测精度普遍高于决策树的预测精度,能够较好的对大数据进行分析处理。
引用
收藏
页码:527 / 537
页数:11
相关论文