X-JOIN DECOMPOSITION FOR UNDIRECTED GRAPHS

被引:28
作者
HABIB, M [1 ]
MAURER, MC [1 ]
机构
[1] CNAM IIE,F-75141 PARIS 03,FRANCE
关键词
D O I
10.1016/0166-218X(79)90043-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In his paper [17], Sabidussi defined the X-join of a family of graphs. Cowan, James, Stanton gave in [6] and O(n4) algorithm that decomposes a graph, when possible, into the X-join of the family of its subgraphs. We give here another approach using an equivalence relation on the edge set of the graph. We prove that if G and its complement are connected then there exists an unique class of edges that covers all the vertices of G. This theorem yields immediately an O(n3) decomposition algorithm. © 1979.
引用
收藏
页码:201 / 207
页数:7
相关论文
共 19 条
[1]  
ARDITTI JC, 1976, CRM607 U MONTR CTR R
[2]  
Balas E., 1977, Networks, V7, P267, DOI 10.1002/net.3230070307
[3]  
Billera L.J, 1971, J COMBIN THEORY B, V11, P234
[4]  
CHATELET A, 1947, ANN SCI ECOLE NORM S, V66, P332
[5]   CERTAIN POLYTOPES ASSOCIATED WITH GRAPHS [J].
CHVATAL, V .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1975, 18 (02) :138-154
[6]  
COWAN DD, 1972, 3 S E C COMB GRAPH T, P281
[7]  
CUNNINGHAM WH, 1973, THESIS U WATERLOO
[8]   DECOMPOSITION PROPERTY OF BASIC ACYCLIC GRAPHS [J].
EFTIMIE, M ;
EFTIMIE, R .
DISCRETE MATHEMATICS, 1977, 17 (03) :271-279
[9]  
FOULIS DJ, 1969, EMPIRICAL LOGIC XERO
[10]   TRANSITIV ORIENTIERBARE GRAPHEN [J].
GALLAI, T .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1967, 18 (1-2) :25-&