THE MULTIDOMAIN STRUCTURE OF ORC1P REVEALS SIMILARITY TO REGULATORS OF DNA-REPLICATION AND TRANSCRIPTIONAL SILENCING

被引:222
作者
BELL, SP [1 ]
MITCHELL, J [1 ]
LEBER, J [1 ]
KOBAYASHI, R [1 ]
STILLMAN, B [1 ]
机构
[1] MIT,DEPT BIOL,CAMBRIDGE,MA 02139
关键词
D O I
10.1016/0092-8674(95)90096-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The origin recognition complex (ORC) is a six protein assembly that binds S. cerevisiae origins of replication and directs DNA replication throughout the genome and transcriptional silencing at the yeast mating-type loci. Here we report the cloning of the genes encoding the 120 kDa (ORC1), 62 kDa (ORC3), and 56 kDa (ORC4) subunits of ORC and the reconstitution of the complete complex after expression of all six subunits in insect cells. Orc1p is related to Cdc6p and Cdc18p, which regulate DNA replication and mitosis, and to Sir3p, a regulator of transcriptional silencing. The N-terminal region of Orc1p is highly related to Sir3p, and studies of Orc1p/Sir3p chimeric proteins indicate that this domain is dedicated to the transcriptional silencing function of ORC.
引用
收藏
页码:563 / 568
页数:6
相关论文
共 28 条
[1]   YEAST ORIGIN RECOGNITION COMPLEX FUNCTIONS IN TRANSCRIPTION SILENCING AND DNA-REPLICATION [J].
BELL, SP ;
KOBAYASHI, R ;
STILLMAN, B .
SCIENCE, 1993, 262 (5141) :1844-1849
[2]   ATP-DEPENDENT RECOGNITION OF EUKARYOTIC ORIGINS OF DNA-REPLICATION BY A MULTIPROTEIN COMPLEX [J].
BELL, SP ;
STILLMAN, B .
NATURE, 1992, 357 (6374) :128-134
[3]   DUAL FUNCTIONS OF CDC6 - A YEAST PROTEIN REQUIRED FOR DNA-REPLICATION ALSO INHIBITS NUCLEAR DIVISION [J].
BUENO, A ;
RUSSELL, P .
EMBO JOURNAL, 1992, 11 (06) :2167-2176
[4]   TARGETING OF SIR1 PROTEIN ESTABLISHES TRANSCRIPTIONAL SILENCING AT HM LOCI AND TELOMERES IN YEAST [J].
CHIEN, CT ;
BUCK, S ;
STERNGLANZ, R ;
SHORE, D .
CELL, 1993, 75 (03) :531-541
[5]   PROTEIN DNA INTERACTIONS AT A YEAST REPLICATION ORIGIN [J].
DIFFLEY, JFX ;
COCKER, JH .
NATURE, 1992, 357 (6374) :169-172
[6]   2 STEPS IN THE ASSEMBLY OF COMPLEXES AT YEAST REPLICATION ORIGINS IN-VIVO [J].
DIFFLEY, JFX ;
COCKER, JH ;
DOWELL, SJ ;
ROWLEY, A .
CELL, 1994, 78 (02) :303-316
[7]   ORIGIN RECOGNITION COMPLEX (ORC) IN TRANSCRIPTIONAL SILENCING AND DNA-REPLICATION IN SACCHAROMYCES-CEREVISIAE [J].
FOSS, M ;
MCNALLY, FJ ;
LAURENSON, P ;
RINE, J .
SCIENCE, 1993, 262 (5141) :1838-1844
[8]   THE ORIGIN RECOGNITION COMPLEX HAS ESSENTIAL FUNCTIONS IN TRANSCRIPTIONAL SILENCING AND CHROMOSOMAL REPLICATION [J].
FOX, CA ;
LOO, S ;
DILLIN, A ;
RINE, J .
GENES & DEVELOPMENT, 1995, 9 (08) :911-924
[9]   HISTONE H3 AND H4 N-TERMINI INTERACT WITH SIR3 AND SIR4 PROTEINS - A MOLECULAR-MODEL FOR THE FORMATION OF HETEROCHROMATIN IN YEAST [J].
HECHT, A ;
LAROCHE, T ;
STRAHLBOLSINGER, S ;
GASSER, SM ;
GRUNSTEIN, M .
CELL, 1995, 80 (04) :583-592
[10]   ADDITION OF EXTRA ORIGINS OF REPLICATION TO A MINICHROMOSOME SUPPRESSES ITS MITOTIC LOSS IN CDC6 AND CDC14 MUTANTS OF SACCHAROMYCES-CEREVISIAE [J].
HOGAN, E ;
KOSHLAND, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (07) :3098-3102