A POLYNOMIAL-TIME ALGORITHM TO FIND THE SHORTEST CYCLE BASIS OF A GRAPH

被引:187
作者
HORTON, JD
机构
[1] Univ of New Brunswick, Fredericton,, NB, Can, Univ of New Brunswick, Fredericton, NB
关键词
D O I
10.1137/0216026
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Define the length of a basis of the cycle space of a graph to be the sum of the lengths of all cycles in the basis. An algorithm is given that finds a cycle basis with the shortest possible length in O(m**3n) operations, where m is the number of edges and n is the number of vertices. This is the first known polynomial-time algorithm for this problem. Edges may be weighted or unweighted. Also, the shortest cycle basis is shown to have at most 3(n-1)(n-2)/2 edges for the unweighted case. An O(mn**2) algorithm to obtain a suboptimal cycle basis of length O(n**2) for unweighted graphs is also given.
引用
收藏
页码:358 / 366
页数:9
相关论文
共 17 条
[1]   OPTIMALLY SPARSE CYCLE AND CO-BOUNDARY BASIS FOR A LINEAR GRAPH [J].
CHUA, LO ;
CHEN, LK .
IEEE TRANSACTIONS ON CIRCUIT THEORY, 1973, CT20 (05) :495-503
[2]  
CRIBB DW, 1981, C NUMERANTIUM, V32, P221
[3]   ALGORITHMS FOR GENERATING FUNDAMENTAL CYCLES IN A GRAPH [J].
DEO, N ;
PRABHU, GM ;
KRISHNAMOORTHY, MS .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1982, 8 (01) :26-42
[4]   MINIMUM-LENGTH FUNDAMENTAL CYCLE SET [J].
DEO, N .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1979, 26 (10) :894-895
[5]  
Dijkstra E. W., 1959, NUMER MATH, P269, DOI DOI 10.1007/BF01386390
[6]  
Dixon E. T., 1976, Networks, V6, P139, DOI 10.1002/net.3230060206
[7]   ALGORITHM-97 - SHORTEST PATH [J].
FLOYD, RW .
COMMUNICATIONS OF THE ACM, 1962, 5 (06) :345-345
[8]  
Hubicka E., 1975, RECENT ADV GRAPH THE, P283
[9]  
KNUTH DE, 1968, ART COMPUTER PROGRAM, V1, P363
[10]  
KOLASINSKA E, 1980, ZASTOSOW MAT, V16, P631