TYROSINE MODIFICATION BY REACTIVE NITROGEN SPECIES - A CLOSER LOOK

被引:367
作者
VANDERVLIET, A [1 ]
EISERICH, JP [1 ]
ONEILL, CA [1 ]
HALLIWELL, B [1 ]
CROSS, CE [1 ]
机构
[1] UNIV LONDON KINGS COLL, NEURODEGENERAT DIS RES CTR, LONDON SW3 6LX, ENGLAND
关键词
PEROXYNITRITE; NITROGEN DIOXIDE; TYROSINE; NITROTYROSINE; DITYROSINE; NITRIC OXIDE;
D O I
10.1006/abbi.1995.1303
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Peroxynitrite (ONOO-) is a powerful oxidant and cytotoxic species formed by the rapid reaction between nitrogen monoxide (nitric oxide, (NO)-N-.) and superoxide (O-2(.-)). At neutral pH ONOO- is partly protonated and this protonated form, peroxynitrous acid (ONOOH), decomposes rapidly to nitrate, forming (an) intermediate(s) with reactivity similar to (OH)-O-. and (NO2)-N-.. Peroxynitrite can hydroxylate and nitrate aromatic rings, and aromatic nitration of phenols such as tyrosine by ONOOH is proposed to proceed via a radical mechanism, with intermediate formation of (NO2)-N-.. Modification of tyrosine by (NO2)-N-. also involves nitration via a radical mechanism. Aromatic nitration of phenols by ONOO- has been shown to be enhanced by superoxide dismutase or Fe3+-EDTA, which were proposed to catalyze heterolytic cleavage of ONOOH to form a nitrating species similar to the nitronium ion (NO2+). We investigated possible mechanisms of tyrosine modification by various reactive nitrogen species, including ONOO-, 3-morpholinosydnonimine (SIN-1), and (NO2)-N-.. Reaction of tyrosine with ONOO- leads to formation of 3-nitrotyrosine and dityrosine, indicating intermediate formation of tyrosyl radicals. The pH dependence of formation of both 3-nitrotyrosine and dityrosine by ONOO- suggests that intermediate formation of ONOOH is required. Qualitatively similar results were obtained when ONOOH was generated continuously by H2O2 and NaNO2 at mildy acidic pH or with SIN-1, a compound which at neutral pH releases both (NO)-N-. and O-2(.-), presumably producing ONOO-. However, relatively low yields of nitrotyrosine were obtained with SIN-1, possibly because of competing reactions of tyrosyl radicals with (NO)-N-. or O-2(.-). Possible involvement of (NO2)-N-. in tyrosine modification by ONOO- was studied using hydroxyl radical scavengers, which can increase the radical yield during decomposition of ONOOH and thereby enhance generation of (NO2)-N-.. Hydroxyl radical scavengers did not affect tyrosine modification by (NO2)-N-. directly and slightly inhibited tyrosine modification by authentic ONOO-. However, when ONOO- was produced at a slower rate, either by SIN-I or by H2O2/NaNO2 at acidic pH, hydroxyl radical scavengers were found to significantly enhance tyrosine nitration. Our results suggest that ONOO- or ONOO--generating systems induce nitration of tyrosine (or tyrosine residues in proteins) via intermediate formation of tyrosyl radicals and (NO2)-N-.. (C) 1995 Academic Press, Inc.
引用
收藏
页码:341 / 349
页数:9
相关论文
共 58 条
[1]  
AMADO R, 1984, METHOD ENZYMOL, V107, P377
[2]   SPIN-TRAPPING STUDIES OF PEROXYNITRITE DECOMPOSITION AND OF 3-MORPHOLINOSYDNONIMINE N-ETHYLCARBAMIDE AUTOOXIDATION - DIRECT EVIDENCE FOR METAL-INDEPENDENT FORMATION OF FREE-RADICAL INTERMEDIATES [J].
AUGUSTO, O ;
GATTI, RM ;
RADI, R .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1994, 310 (01) :118-125
[3]   APPARENT HYDROXYL RADICAL PRODUCTION BY PEROXYNITRITE - IMPLICATIONS FOR ENDOTHELIAL INJURY FROM NITRIC-OXIDE AND SUPEROXIDE [J].
BECKMAN, JS ;
BECKMAN, TW ;
CHEN, J ;
MARSHALL, PA ;
FREEMAN, BA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (04) :1620-1624
[4]   KINETICS OF SUPEROXIDE DISMUTASE-CATALYZED AND IRON-CATALYZED NITRATION OF PHENOLICS BY PEROXYNITRITE [J].
BECKMAN, JS ;
ISCHIROPOULOS, H ;
ZHU, L ;
VANDERWOERD, M ;
SMITH, C ;
CHEN, J ;
HARRISON, J ;
MARTIN, JC ;
TSAI, M .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1992, 298 (02) :438-445
[5]  
BECKMAN JS, 1994, METHOD ENZYMOL, V233, P229
[6]   EXTENSIVE NITRATION OF PROTEIN TYROSINES IN HUMAN ATHEROSCLEROSIS DETECTED BY IMMUNOHISTOCHEMISTRY [J].
BECKMANN, JS ;
YE, YZ ;
ANDERSON, PG ;
CHEN, J ;
ACCAVITTI, MA ;
TARPEY, MM ;
WHITE, CR ;
BECKMAN, JS .
BIOLOGICAL CHEMISTRY HOPPE-SEYLER, 1994, 375 (02) :81-88
[7]   REACTIVITY OF HO2/O-2 RADICALS IN AQUEOUS-SOLUTION [J].
BIELSKI, BHJ ;
CABELLI, DE ;
ARUDI, RL ;
ROSS, AB .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1985, 14 (04) :1041-1100
[8]   REACTION OF SUPEROXIDE WITH NITRIC-OXIDE TO FORM PEROXONITRITE IN ALKALINE AQUEOUS-SOLUTION [J].
BLOUGH, NV ;
ZAFIRIOU, OC .
INORGANIC CHEMISTRY, 1985, 24 (22) :3502-3504
[9]   KINETICS OF NITRIC-OXIDE AND HYDROGEN-PEROXIDE PRODUCTION AND FORMATION OF PEROXYNITRITE DURING THE RESPIRATORY BURST OF HUMAN NEUTROPHILS [J].
CARRERAS, MC ;
PARGAMENT, GA ;
CATZ, SD ;
PODEROSO, JJ ;
BOVERIS, A .
FEBS LETTERS, 1994, 341 (01) :65-68
[10]   ON THE PH-DEPENDENT YIELD OF HYDROXYL RADICAL PRODUCTS FROM PEROXYNITRITE [J].
CROW, JP ;
SPRUELL, C ;
CHEN, J ;
GUNN, C ;
ISCHIROPOULOS, H ;
TSAI, M ;
SMITH, CD ;
RADI, R ;
KOPPENOL, WH ;
BECKMAN, JS .
FREE RADICAL BIOLOGY AND MEDICINE, 1994, 16 (03) :331-338