EXPLOITING SPECIAL STRUCTURE IN A PRIMAL DUAL PATH-FOLLOWING ALGORITHM

被引:14
作者
CHOI, IC
GOLDFARB, D
机构
[1] COLUMBIA UNIV,DEPT IND ENGN,SEELEY W MUDD BLDG,NEW YORK,NY 10027
[2] WICHITA STATE UNIV,DEPT IND ENGN,WICHITA,KS 67208
关键词
INTERIOR POINT METHOD; PRIMAL DUAL PATH-FOLLOWING ALGORITHM; STRUCTURED LINEAR PROGRAMS;
D O I
10.1007/BF01581258
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A primal-dual path-following algorithm that applies directly to a linear program of the form, min{c(t)x\Ax = b, Hx less-than-or-equal-to u, x greater-than-or-equal-to 0, X is-an-element-of R(n)}, is presented. This algorithm explicitly handles upper bounds, generalized upper bounds, variable upper bounds, and block diagonal structure. We also show how the structure of time-staged problems and network flow problems can be exploited, especially on a parallel computer. Finally, using our algorithm, we obtain a complexity bound of 0(square-root n ds2 log(nkappa)) for transportation problems with s origins, d destinations (s < d), and n arcs, where kappa is the maximum absolute value of the input data.
引用
收藏
页码:33 / 52
页数:20
相关论文
共 26 条
[1]  
Aho A. V., 1974, DESIGN ANAL COMPUTER
[2]   A VARIATION ON KARMARKAR ALGORITHM FOR SOLVING LINEAR-PROGRAMMING PROBLEMS [J].
BARNES, ER .
MATHEMATICAL PROGRAMMING, 1986, 36 (02) :174-182
[3]   COMPUTING BLOCK-ANGULAR KARMARKAR PROJECTIONS WITH APPLICATIONS TO STOCHASTIC-PROGRAMMING [J].
BIRGE, JR ;
QI, LQ .
MANAGEMENT SCIENCE, 1988, 34 (12) :1472-1479
[4]  
CHOI IC, 1990, ORSA J COMPUTING, V2, P304
[5]  
Dikin I. I., 1967, SOVIET MATH DOKLADY, V8, P674
[6]  
Fiduccia C. M., 1988, PROC 19 AUTOM C, P241, DOI DOI 10.1109/DAC.1982.1585498
[7]   POLYNOMIAL-TIME ALGORITHMS FOR LINEAR-PROGRAMMING BASED ONLY ON PRIMAL SCALING AND PROJECTED GRADIENTS OF A POTENTIAL FUNCTION [J].
FREUND, RM .
MATHEMATICAL PROGRAMMING, 1991, 51 (02) :203-222
[8]   ON PROJECTED NEWTON BARRIER METHODS FOR LINEAR-PROGRAMMING AND AN EQUIVALENCE TO KARMARKAR PROJECTIVE METHOD [J].
GILL, PE ;
MURRAY, W ;
SAUNDERS, MA ;
TOMLIN, JA ;
WRIGHT, MH .
MATHEMATICAL PROGRAMMING, 1986, 36 (02) :183-209
[9]  
GILL PE, 1988, SOL88 STANF U DEP OP
[10]  
GOLDFARB D, 1989, HDB OPERATIONS RES M, V1