ROLE OF O-2 IN REGULATING TISSUE RESPIRATION IN DOG MUSCLE WORKING INSITU

被引:157
作者
HOGAN, MC [1 ]
ARTHUR, PG [1 ]
BEBOUT, DE [1 ]
HOCHACHKA, PW [1 ]
WAGNER, PD [1 ]
机构
[1] UNIV BRITISH COLUMBIA,DEPT ZOOL,VANCOUVER V6T 2A9,BC,CANADA
关键词
FATIGUE; SKELETAL MUSCLE; GAS EXCHANGE; EXERCISE; ACID-BASE BALANCE; LACTATE; LACTIC ACID; MITOCHONDRIAL RESPIRATION; PHOSPHOCREATINE;
D O I
10.1152/jappl.1992.73.2.728
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
This study was designed to investigate the role of tissue oxygenation in some of the factors that are thought to regulate muscle respiration and metabolism. Tissue oxygenation was altered by reductions in O2 delivery (muscle blood flow x arterial O2 content), induced by decreases in arterial PO2 (Pa(O2)). O2 uptake (VO2) was measured in isolated in situ canine gastrocnemius at rest and while working at two stimulation intensities (isometric tetanic contractions at 0.5 and 1 contractions/s) on three separate occasions, with only the level of Pa(O2) (78, 30, and 21 Torr) being different for each occasion. Muscle blood flow was held constant (pump perfusion) at each work intensity for the three different levels of Pa(O2). Muscle biopsies were obtained at the end of each rest and work period. Muscle VO2 was significantly less (P < 0.05) at both stimulation intensities for the hypoxemic conditions, whereas [ATP] was reduced only during the highest work intensity during both hypoxemic conditions (31 % reduction at 21 Torr Pa(O2) and 17% at 30 Torr). For each level of Pa(O2), the relationships between the changes that occurred in VO2 and levels of phosphocreatine, ADP, and ATP/ADP . P(i) as the stimulation intensity was increased were significantly correlated; however, the slopes and intercepts of these lines were significantly different for each Pa(O2). Thus a greater change in any of the proposed regulators of tissue respiration (e.g., phosphocreatine, ADP) was required to achieve a given VO2 as Pa(O2) was decreased. These results indicate that VO2 can be dissociated from these proposed regulators of tissue respiration and that this is likely due to an interaction with tissue or mitochondrial O2 tension, thereby demonstrating the importance of O2 as a modulator of the regulators of tissue respiration.
引用
收藏
页码:728 / 736
页数:9
相关论文
共 39 条
[1]   MODELING THE EFFECTS OF HYPOXIA ON ATP TURNOVER IN EXERCISING MUSCLE [J].
ARTHUR, PG ;
HOGAN, MC ;
BEBOUT, DE ;
WAGNER, PD ;
HOCHACHKA, PW .
JOURNAL OF APPLIED PHYSIOLOGY, 1992, 73 (02) :737-742
[2]  
BARBEE RW, 1983, J APPL PHYSIOL, V4, P1687
[3]  
CHANCE B, 1955, J BIOL CHEM, V217, P383
[4]   REGULATION OF VO2 IN RED MUSCLE - DO CURRENT BIOCHEMICAL HYPOTHESES FIT INVIVO DATA [J].
CONNETT, RJ ;
HONIG, CR .
AMERICAN JOURNAL OF PHYSIOLOGY, 1989, 256 (04) :R898-R906
[5]   ANALYSIS OF METABOLIC CONTROL - NEW INSIGHTS USING SCALED CREATINE-KINASE MODEL [J].
CONNETT, RJ .
AMERICAN JOURNAL OF PHYSIOLOGY, 1988, 254 (06) :R949-R959
[6]  
CONNETT RJ, 1985, ADV EXP MED BIOL, V191, P291
[7]   ENERGY-SOURCES IN FULLY AEROBIC REST-WORK TRANSITIONS - A NEW ROLE FOR GLYCOLYSIS [J].
CONNETT, RJ ;
GAYESKI, TEJ ;
HONIG, CR .
AMERICAN JOURNAL OF PHYSIOLOGY, 1985, 248 (06) :H922-H929
[8]   LACTATE EFFLUX IS UNRELATED TO INTRACELLULAR PO2 IN A WORKING RED MUSCLE INSITU [J].
CONNETT, RJ ;
GAYESKI, TEJ ;
HONIG, CR .
JOURNAL OF APPLIED PHYSIOLOGY, 1986, 61 (02) :402-408
[9]   CHEMICAL ENERGETICS OF SLOW-TWITCH AND FAST-TWITCH MUSCLES OF THE MOUSE [J].
CROW, MT ;
KUSHMERICK, MJ .
JOURNAL OF GENERAL PHYSIOLOGY, 1982, 79 (01) :147-166
[10]  
DAWSON MJ, 1977, J PHYSIOL-LONDON, V267, P703