FINGERING INSTABILITY IN A LATTICE GAS

被引:5
作者
HAYOT, F
机构
[1] Department of Physics, The Ohio State University, Columbus, OH 43210
来源
PHYSICA D | 1991年 / 47卷 / 1-2期
关键词
D O I
10.1016/0167-2789(91)90280-M
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
I describe work done over the last two years concerning a Saffman-Taylor-type instability in lattice gas hydrodynamics. The emergence of typical macroscopic laws, such as Darcy's and Laplace's, from a microscopic lattice gas is shown. The successful modelling of a fingering instability between two immiscible fluids hinges on the development of an appropriate interface algorithm.
引用
收藏
页码:64 / 71
页数:8
相关论文
共 10 条
[1]   DARCY LAW FROM LATTICE-GAS HYDRODYNAMICS [J].
BALASUBRAMANIAN, K ;
HAYOT, F ;
SAAM, WF .
PHYSICAL REVIEW A, 1987, 36 (05) :2248-2253
[2]   VISCOUS FLOWS IN 2 DIMENSIONS [J].
BENSIMON, D ;
KADANOFF, LP ;
LIANG, SD ;
SHRAIMAN, BI ;
TANG, C .
REVIEWS OF MODERN PHYSICS, 1986, 58 (04) :977-999
[3]   INTERFACE FLUCTUATIONS IN A LATTICE GAS [J].
BURGESS, D ;
HAYOT, F ;
SAAM, WF .
PHYSICAL REVIEW A, 1989, 39 (09) :4695-4700
[4]   MODEL FOR SURFACE-TENSION IN LATTICE-GAS HYDRODYNAMICS [J].
BURGESS, D ;
HAYOT, F ;
SAAM, WF .
PHYSICAL REVIEW A, 1988, 38 (07) :3589-3592
[5]   SAFFMAN-TAYLOR - TYPE INSTABILITY IN A LATTICE GAS [J].
BURGESS, D ;
HAYOT, F .
PHYSICAL REVIEW A, 1989, 40 (09) :5187-5192
[6]   RANDOM-WALK SIMULATIONS OF FLOW IN HELE SHAW CELLS [J].
LIANG, S .
PHYSICAL REVIEW A, 1986, 33 (04) :2663-2674
[7]   NONLINEAR UNSTABLE VISCOUS FINGERS IN HELE-SHAW FLOWS .2. NUMERICAL-SIMULATION [J].
MEIBURG, E ;
HOMSY, GM .
PHYSICS OF FLUIDS, 1988, 31 (03) :429-439
[8]   IMMISCIBLE CELLULAR-AUTOMATON FLUIDS [J].
ROTHMAN, DH ;
KELLER, JM .
JOURNAL OF STATISTICAL PHYSICS, 1988, 52 (3-4) :1119-1127
[9]   CELLULAR-AUTOMATON FLUIDS - A MODEL FOR FLOW IN POROUS-MEDIA [J].
ROTHMAN, DH .
GEOPHYSICS, 1988, 53 (04) :509-518
[10]   THE PENETRATION OF A FLUID INTO A POROUS MEDIUM OR HELE-SHAW CELL CONTAINING A MORE VISCOUS LIQUID [J].
SAFFMAN, PG ;
TAYLOR, G .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1958, 245 (1242) :312-&