OPTIMUM SMOOTHING OF THE WIGNER-VILLE DISTRIBUTION

被引:23
作者
ANDRIEUX, JC [1 ]
FEIX, MR [1 ]
MOURGUES, G [1 ]
BERTRAND, P [1 ]
IZRAR, B [1 ]
NGUYEN, VT [1 ]
机构
[1] UNIV NANCY 1, EQUIPE PHYS THEOR, F-54506 VANDOEUVRE LES NANCY, FRANCE
来源
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING | 1987年 / 35卷 / 06期
关键词
SIGNAL PROCESSING - Optimization;
D O I
10.1109/TASSP.1987.1165204
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A compromise is found between the different requirements to be fulfilled by a time frequency distribution, namely, positivity and obtention of a distribution close to the Dirac one for the unimodular signal s(t) equals exp PHI (t). Starting from the usual Wigner-Ville distribution, optimum smoothing is defined by minimizing the width of the different functions approximating the desired Dirac distribution. The smoothing is obtained by a convolution through a double Gaussian of width sigma //t and sigma // omega such that sigma //t sigma // omega equals 1/2. Two possibilities appear. These results, to be physically meaningful, impose inequalities on the successive derivatives of PHI which are equivalent to those used for obtaining the classical limit for the corresponding quantum problem.
引用
收藏
页码:764 / 769
页数:6
相关论文
共 25 条
[1]   OBTAINING NON-NEGATIVE QUANTUM-MECHANICAL DISTRIBUTION FUNCTION [J].
BERTRAND, P ;
DOREMUS, JP ;
IZRAR, B ;
NGUYEN, VT ;
FEIX, MR .
PHYSICS LETTERS A, 1983, 94 (09) :415-417
[2]  
BOUACHACHE B, 1979, CR ACAD SCI A MATH, V288, P307
[3]  
BOUACHACHE B, 1983, 9TH P GRETSI C, V2, P879
[4]  
BOUACHACHE B, 1982, THESIS I NATIONAL PO
[5]  
CARTWRIGHT ND, 1976, PHYSICA A, V83, P210
[6]  
CLAASEN TACM, 1980, PHILIPS J RES, V35, P372
[7]   GENERALIZED PHASE-SPACE DISTRIBUTION FUNCTIONS [J].
COHEN, L .
JOURNAL OF MATHEMATICAL PHYSICS, 1966, 7 (05) :781-&
[8]  
COHEN L, CRITICAL REV FUNDAME
[9]  
COHEN L, 1985, MAR P ICASSP, P548
[10]  
DEBRUIJN NG, 1967, UNCERTAINTY PRINCIPL