HIERARCHICAL MIXTURES OF EXPERTS AND THE EM ALGORITHM

被引:1661
作者
JORDAN, MI [1 ]
JACOBS, RA [1 ]
机构
[1] UNIV ROCHESTER,DEPT PSYCHOL,ROCHESTER,NY 14627
关键词
D O I
10.1162/neco.1994.6.2.181
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a tree-structured architecture for supervised learning. The statistical model underlying the architecture is a hierarchical mixture model in which both the mixture coefficients and the mixture components are generalized linear models (GLIM's). Learning is treated as a maximum likelihood problem; in particular, we present an Expectation-Maximization (EM) algorithm for adjusting the parameters of the architecture. We also develop an on-line learning algorithm in which the parameters are updated incrementally. Comparative simulation results are presented in the robot dynamics domain.
引用
收藏
页码:181 / 214
页数:34
相关论文
共 41 条
[1]  
[Anonymous], NEUROCOMPUTING ALGOR
[2]   AUTO-ASSOCIATION BY MULTILAYER PERCEPTRONS AND SINGULAR VALUE DECOMPOSITION [J].
BOURLARD, H ;
KAMP, Y .
BIOLOGICAL CYBERNETICS, 1988, 59 (4-5) :291-294
[3]  
Breiman L, 2017, CLASSIFICATION REGRE, P368, DOI 10.1201/9781315139470
[4]  
BUNTINE W, 1991, NASA FIA90121901 AM
[5]  
CHEESEMAN P, 1988, 5TH P INT C MACH LEA
[6]  
Cox D.R., 1974, THEORETICAL STAT
[7]  
Cox D.R., 1989, ANAL BINARY DATA, V32
[8]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[9]  
Duda R. O., 1973, PATTERN CLASSIFICATI, V3
[10]  
FINNEY DJ, 1973, STATISTICAL METHODS