BAYESIAN-ANALYSIS .1. PARAMETER-ESTIMATION USING QUADRATURE NMR MODELS

被引:138
作者
BRETTHORST, GL
机构
[1] Department of Chemistry, Washington University, St. Louis, MO 63130-4899, Campus Box] 134
基金
美国国家卫生研究院;
关键词
D O I
10.1016/0022-2364(90)90287-J
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In the analysis of magnetic resonance data, a great deal of prior information is available which is ordinarily not used. For example, considering high-resolution NMR spectroscopy, one knows in general terms what functional form the signal will take (e.g., sum of exponentially decaying sinusoids) and that, for quadrature measurements, it will be the same in both channels except for a 90° phase shift. When prior information is incorporated into the analysis of time-domain data, the frequencies, decay rate constants, and amplitudes may be estimated much more precisely than by direct use of discrete Fourier transforms. Here, Bayesian probability theory is used to estimate parameters using quadrature models of NMR data. The calculation results in an interpretation of the quadrature model fitting that allows one to understand on an intuitive level what frequencies and decay rates will be estimated and why. © 1990.
引用
收藏
页码:533 / 551
页数:19
相关论文
共 17 条
[1]  
Bayes T., 1763, PHILOS T ROY SOC LON, V53, P370, DOI DOI 10.1098/RSTL.1763.0053
[2]   BAYESIAN-ANALYSIS .3. APPLICATIONS TO NMR SIGNAL-DETECTION, MODEL SELECTION, AND PARAMETER-ESTIMATION [J].
BRETTHORST, GL .
JOURNAL OF MAGNETIC RESONANCE, 1990, 88 (03) :571-595
[3]   BAYESIAN-ANALYSIS .2. SIGNAL-DETECTION AND MODEL SELECTION [J].
BRETTHORST, GL .
JOURNAL OF MAGNETIC RESONANCE, 1990, 88 (03) :552-570
[4]   P-31 NMR BAYESIAN SPECTRAL-ANALYSIS OF RAT-BRAIN INVIVO [J].
BRETTHORST, GL ;
KOTYK, JJ ;
ACKERMAN, JJH .
MAGNETIC RESONANCE IN MEDICINE, 1989, 9 (02) :282-287
[5]   BAYESIAN-ANALYSIS OF TIME-DOMAIN MAGNETIC-RESONANCE SIGNALS [J].
BRETTHORST, GL ;
HUNG, CC ;
DAVIGNON, DA ;
ACKERMAN, JJH .
JOURNAL OF MAGNETIC RESONANCE, 1988, 79 (02) :369-376
[6]  
BRETTHORST GL, 1988, LECTURE NOTE STATIST, V48
[7]  
BRETTHORST GL, 1987, THESIS WASHINGTON U
[8]  
Cox R. T, 1961, ALGEBRA PROBABLE INF
[9]  
Erickson G. J., 1988, MAXIMUM ENTROPY BAYE, V1, P75
[10]  
JAYNES E., 1983, PAPERS PROBABILITY S