ORGANIZATION AND STABILITY OF A POLYTOPIC MEMBRANE-PROTEIN - DELETION ANALYSIS OF THE LACTOSE PERMEASE OF ESCHERICHIA-COLI

被引:44
作者
BIBI, E
VERNER, G
CHANG, CY
KABACK, HR
机构
[1] UNIV CALIF LOS ANGELES,INST MOLEC BIOL,HOWARD HUGHES MED INST,DEPT PHYSIOL,LOS ANGELES,CA 90024
[2] UNIV CALIF LOS ANGELES,INST MOLEC BIOL,HOWARD HUGHES MED INST,DEPT MICROBIOL & MOLEC GENET,LOS ANGELES,CA 90024
关键词
MEMBRANE INSERTION; TOPOLOGY; LACY-PHOA FUSIONS; LACTOSE TRANSPORT;
D O I
10.1073/pnas.88.16.7271
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The overall topology of polytopic membrane proteins is thought to result from either the oriented insertion of the N-terminal alpha-helical domain followed by passive insertion of subsequent helices or from the function of independent topogenic determinants dispersed throughout the molecules. By using the lactose permease of Escherichia coli, a well-characterized membrane protein with 12 transmembrane domains and the N and C termini on the cytoplasmic surface of the membrane, we have studied the insertion and stability of in-frame deletion mutants. So long as the first N-terminal and the last four C-terminal putative alpha-helical domains are retained, stable polypeptides are inserted into the membrane, even when an odd number of helical domains is deleted. Moreover, even when an odd number of helices is deleted, the C terminus remains on the cytoplasmic surface of the membrane, as judged by lacY-phoA fusion analysis. In addition, permease molecules devoid of even or odd numbers of putative transmembrane helices retain a specific pathway for downhill lactose translocation. The findings imply that relatively short C-terminal domains of the permease contain topological information sufficient for insertion in the native orientation regardless of the orientation of the N terminus.
引用
收藏
页码:7271 / 7275
页数:5
相关论文
共 39 条
[1]   INTRACELLULAR PROTEIN TOPOGENESIS [J].
BLOBEL, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1980, 77 (03) :1496-1500
[2]   A COMPLEMENTATION ANALYSIS OF RESTRICTION AND MODIFICATION OF DNA IN ESCHERICHIA COLI [J].
BOYER, HW ;
ROULLAND.D .
JOURNAL OF MOLECULAR BIOLOGY, 1969, 41 (03) :459-&
[3]   SEQUENCE OF THE LACTOSE PERMEASE GENE [J].
BUCHEL, DE ;
GRONENBORN, B ;
MULLERHILL, B .
NATURE, 1980, 283 (5747) :541-545
[4]   LAC PERMEASE OF ESCHERICHIA-COLI - TOPOLOGY AND SEQUENCE ELEMENTS PROMOTING MEMBRANE INSERTION [J].
CALAMIA, J ;
MANOIL, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (13) :4937-4941
[5]   MONOCLONAL-ANTIBODIES AGAINST THE LAC CARRIER PROTEIN FROM ESCHERICHIA-COLI .1. FUNCTIONAL-STUDIES [J].
CARRASCO, N ;
VIITANEN, P ;
HERZLINGER, D ;
KABACK, HR .
BIOCHEMISTRY, 1984, 23 (16) :3681-3687
[6]   PREPARATION, CHARACTERIZATION, AND PROPERTIES OF MONOCLONAL-ANTIBODIES AGAINST THE LAC CARRIER PROTEIN FROM ESCHERICHIA-COLI [J].
CARRASCO, N ;
TAHARA, SM ;
PATEL, L ;
GOLDKORN, T ;
KABACK, HR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1982, 79 (22) :6894-6898
[7]   INTRAMOLECULAR DISLOCATION OF THE COOH TERMINUS OF THE LAC CARRIER PROTEIN IN RECONSTITUTED PROTEOLIPOSOMES [J].
CARRASCO, N ;
HERZLINGER, D ;
MITCHELL, R ;
DECHIARA, S ;
DANHO, W ;
GABRIEL, TF ;
KABACK, HR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1984, 81 (15) :4672-4676
[8]   ANALYSIS OF MEMBRANE AND SURFACE PROTEIN SEQUENCES WITH THE HYDROPHOBIC MOMENT PLOT [J].
EISENBERG, D ;
SCHWARZ, E ;
KOMAROMY, M ;
WALL, R .
JOURNAL OF MOLECULAR BIOLOGY, 1984, 179 (01) :125-142
[9]  
ENGLEMAN DM, 1981, CELL, V23, P411
[10]  
FOSTER DL, 1983, J BIOL CHEM, V258, P31