SHARP UPPER AND LOWER BOUNDS ON THE LENGTH OF GENERAL DAVENPORT-SCHINZEL SEQUENCES

被引:86
作者
AGARWAL, PK
SHARIR, M
SHOR, P
机构
[1] TEL AVIV UNIV,SCH MATH SCI,IL-69978 TEL AVIV,ISRAEL
[2] AT&T BELL LABS,MURRAY HILL,NJ 07974
关键词
D O I
10.1016/0097-3165(89)90032-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:228 / 274
页数:47
相关论文
共 21 条
[1]   SOME DYNAMIC COMPUTATIONAL GEOMETRY PROBLEMS [J].
ATALLAH, MJ .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1985, 11 (12) :1171-1181
[2]  
BALSTAN A, 1988, J ACM JACM, V35, P267
[3]  
CLARKSON K, 1987, 19TH P ANN ACM S THE, P56
[4]   VISIBILITY PROBLEMS FOR POLYHEDRAL TERRAINS [J].
COLE, R ;
SHARIR, M .
JOURNAL OF SYMBOLIC COMPUTATION, 1989, 7 (01) :11-30
[5]  
Davenport H., 1965, AM J MATH, V87, P684
[6]  
DAVENPORT H, 1971, ACTA ARITH, V17, P363
[7]  
EDELSBRUNNER H, 1986, IN PRESS DISCRETE CO
[8]  
EDELSBRUNNER H, IN PRESS DISCRETE CO
[9]  
GUIBAS L, 1989, IN PRESS DISCRETE CO, V4
[10]   NONLINEARITY OF DAVENPORT SCHINZEL SEQUENCES AND OF GENERALIZED PATH COMPRESSION SCHEMES [J].
HART, S ;
SHARIR, M .
COMBINATORICA, 1986, 6 (02) :151-177