GLUTAMATE MEDIATES A SLOW SYNAPTIC RESPONSE IN HIPPOCAMPAL SLICE CULTURES

被引:116
作者
CHARPAK, S
GAHWILER, BH
机构
关键词
D O I
10.1098/rspb.1991.0035
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Glutamate (GLU) mediates its 'fast' excitatory transmitter action in the brain by directly gating cation-selective ion channels ('ionotropic' receptors). However, GLU can also activate another type of receptor, coupled to phospholipase C ('metabotropic' receptor). In hippocampal cells, stimulation of this metabotropic receptor by GLU, or by a racemic mixture of (1S-3R and 1R-3S) 1-aminocyclopentyl-1,3-dicarboxylate (ACPD), induces a slower excitation mediated by inhibition of K+ currents. We have assessed whether this slow form of metabotropic receptor excitation can contribute to the effects of synaptically released GLU in hippocampal slice cultures, by recording the responses of CA3 pyramidal cells to afferent mossy fibre stimulation. When the fast ionotropic response was blocked pharmacologically, mossy fibre stimulation produced a slow depolarizing postsynaptic potential associated with a decrease in membrane conductance, a depression of the slow after-hyperpolarization following a train of action potentials, and reduced accommodation during the action potential train. Under voltage-clamp, mossy fibre stimulation produced a slow voltage-dependent inward current which resembled that produced by application of exogenous ACPD or quisqualate (QUIS), and which was occluded by these metabotropic agonists. We therefore suggest that synaptically released GLU can induce two types of postynaptic responses: a fast excitation through activation of ionotropic receptors and a slower excitation associated with inhibition of K+ conductances through activation of metabotropic receptors. This is analogous to the dual action of acetylcholine on ionotropic (nicotinic) and metabotropic (muscarinic) receptors.
引用
收藏
页码:221 / 226
页数:6
相关论文
共 44 条
[1]   IONIC MECHANISMS OF CHOLINERGIC EXCITATION IN MAMMALIAN HIPPOCAMPAL PYRAMIDAL CELLS [J].
BENARDO, LS ;
PRINCE, DA .
BRAIN RESEARCH, 1982, 249 (02) :333-344
[2]   POTASSIUM CONDUCTANCES IN HIPPOCAMPAL-NEURONS BLOCKED BY EXCITATORY AMINO-ACID TRANSMITTERS [J].
CHARPAK, S ;
GAHWILER, BH ;
DO, KQ ;
KNOPFEL, T .
NATURE, 1990, 347 (6295) :765-767
[3]   ACETYLCHOLINE MEDIATES A SLOW SYNAPTIC POTENTIAL IN HIPPOCAMPAL PYRAMIDAL CELLS [J].
COLE, AE ;
NICOLL, RA .
SCIENCE, 1983, 221 (4617) :1299-1301
[4]   CHARACTERIZATION OF A SLOW CHOLINERGIC POST-SYNAPTIC POTENTIAL RECORDED INVITRO FROM RAT HIPPOCAMPAL PYRAMIDAL CELLS [J].
COLE, AE ;
NICOLL, RA .
JOURNAL OF PHYSIOLOGY-LONDON, 1984, 352 (JUL) :173-188
[5]   DIFFERENTIAL MODULATION OF 3 SEPARATE K-CONDUCTANCES IN HIPPOCAMPAL CA1 NEURONS BY SEROTONIN [J].
COLINO, A ;
HALLIWELL, JV .
NATURE, 1987, 328 (6125) :73-77
[6]  
COLLINGRIDGE GL, 1989, PHARMACOL REV, V41, P143
[7]   PAIRED-PULSE DEPRESSION OF MONOSYNAPTIC GABA-MEDIATED INHIBITORY POSTSYNAPTIC RESPONSES IN RAT HIPPOCAMPUS [J].
DAVIES, CH ;
DAVIES, SN ;
COLLINGRIDGE, GL .
JOURNAL OF PHYSIOLOGY-LONDON, 1990, 424 :513-531
[8]  
DUTAR P, 1988, J NEUROSCI, V8, P4214
[9]   GLUTAMATE RECEPTOR-LINKED CHANGES IN MEMBRANE-POTENTIAL AND INTRACELLULAR CA-2+ IN PRIMARY RAT ASTROCYTES [J].
ENKVIST, MOK ;
HOLOPAINEN, I ;
AKERMAN, KEO .
GLIA, 1989, 2 (06) :397-402
[10]   REGIONAL DIFFERENCES IN THE COUPLING OF MUSCARINIC RECEPTORS TO INOSITOL PHOSPHOLIPID HYDROLYSIS IN GUINEA-PIG BRAIN [J].
FISHER, SK ;
BARTUS, RT .
JOURNAL OF NEUROCHEMISTRY, 1985, 45 (04) :1085-1095