MOTION OF LEVEL SETS BY MEAN-CURVATURE .1.

被引:806
作者
EVANS, LC
SPRUCK, J
机构
[1] UNIV CALIF BERKELEY,BERKELEY,CA 94720
[2] UNIV MASSACHUSETTS,AMHERST,MA 01003
关键词
D O I
10.4310/jdg/1214446559
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a unique weak solution of the nonlinear PDE which asserts each level set evolves in time according to its mean curvature. This weak solution allows us then to define for any compact set GAMMA-0 a unique generalized motion by mean curvature, existing for all time. We investigate the various geometric properties and pathologies of this evolution.
引用
收藏
页码:635 / 681
页数:47
相关论文
共 37 条
[1]  
ABRESCH U, 1986, J DIFFER GEOM, V23, P175
[2]   FIRST VARIATION OF A VARIFOLD [J].
ALLARD, WK .
ANNALS OF MATHEMATICS, 1972, 95 (03) :417-&
[3]  
ANGENENT S, PARABOLIC EQUATIONS, V2
[4]  
ANGENENT S, PARABOLIC EQUATIONS, V1
[5]   MINIMAL CONES AND BERNSTEIN PROBLEM [J].
BOMBIERI, E ;
DEGIORGI, E ;
GIUSTI, E .
INVENTIONES MATHEMATICAE, 1969, 7 (03) :243-&
[6]  
Brakke K. A., 1978, MATH NOTES+, V20
[7]   CONVEXITY PROPERTIES OF SOLUTIONS TO SOME CLASSICAL VARIATIONAL-PROBLEMS [J].
CAFFARELLI, LA ;
SPRUCK, J .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1982, 7 (11) :1337-1379
[8]  
CHEN YG, 1989, UNIQUENESS EXISTENCE
[9]   SOME PROPERTIES OF VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
EVANS, LC ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (02) :487-502
[10]   VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (01) :1-42