PROXIMITY CONTROL IN BUNDLE METHODS FOR CONVEX NONDIFFERENTIABLE MINIMIZATION

被引:290
作者
KIWIEL, KC
机构
[1] Systems Research Institute, Polish Academy of Sciences, Warsaw, 01-447
关键词
convex programming; descent methods; Nondifferentiable minimization; numerical methods;
D O I
10.1007/BF01585731
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Proximal bundle methods for minimizing a convex function f generate a sequence {xk} by taking xk+1 to be the minimizer of {Mathematical expression}, where {Mathematical expression} is a sufficiently accurate polyhedral approximation to f and uk > 0. The usual choice of uk = 1 may yield very slow convergence. A technique is given for choosing {uk} adaptively that eliminates sensitivity to objective scaling. Some encouraging numerical experience is reported. © 1990 North-Holland.
引用
收藏
页码:105 / 122
页数:18
相关论文
共 23 条
[1]  
AUSLENDER A, 1986, MATH PROGRAMMING STU, V30, P102
[2]   A SUBGRADIENT ALGORITHM FOR CERTAIN MINIMAX AND MINISUM PROBLEMS - THE CONSTRAINED CASE [J].
CHATELON, J ;
HEARN, D ;
LOWE, TJ .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1982, 20 (04) :455-469
[3]  
Clarke F.H., 1983, OPTIMIZATION NONSMOO
[4]   A DESCENT ALGORITHM FOR NONSMOOTH CONVEX-OPTIMIZATION [J].
FUKUSHIMA, M .
MATHEMATICAL PROGRAMMING, 1984, 30 (02) :163-175
[5]  
HOCK W, 1981, LECTURE NOTES EC MAT, V187
[7]   A CONSTRAINT LINEARIZATION METHOD FOR NONDIFFERENTIABLE CONVEX MINIMIZATION [J].
KIWIEL, KC .
NUMERISCHE MATHEMATIK, 1987, 51 (04) :395-414
[8]   AN EXACT PENALTY-FUNCTION ALGORITHM FOR NON-SMOOTH CONVEX CONSTRAINED MINIMIZATION PROBLEMS [J].
KIWIEL, KC .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1985, 5 (01) :111-119
[10]   AN AGGREGATE SUBGRADIENT METHOD FOR NONSMOOTH CONVEX MINIMIZATION [J].
KIWIEL, KC .
MATHEMATICAL PROGRAMMING, 1983, 27 (03) :320-341