EVOLUTIONARY DYNAMICS WITH AGGREGATE SHOCKS

被引:167
作者
FUDENBERG, D [1 ]
HARRIS, C [1 ]
机构
[1] UNIV OXFORD NUFFIELD COLL,OXFORD OX1 1NF,ENGLAND
基金
美国国家科学基金会;
关键词
D O I
10.1016/0022-0531(92)90044-I
中图分类号
F [经济];
学科分类号
02 ;
摘要
We study the evolution of the continuous-time replicator dynamics when payoffs are subject to aggregate shocks that take the form of a Wiener process. In the absence of "mutation", the system need not have an ergodic distribution. With mutation, the system does have an ergodic distribution. In the limit as the mutation rate and the variance of the shocks converge to zero, this distribution concentrates on the risk-dominant equilibrium. This result is not, however, robust to changes in the underlying deterministic dynamics. © 1992.
引用
收藏
页码:420 / 441
页数:22
相关论文
共 10 条
[1]  
BOYLAN R, 1991, CONTINUOUS APPROXIMA
[2]  
BOYLAN R, 1990, EQUILIBRIA RESISTANT
[3]  
ELLISON G, 1991, UNPUB LEARNING LOCAL
[4]   STOCHASTIC EVOLUTIONARY GAME DYNAMICS [J].
FOSTER, D ;
YOUNG, P .
THEORETICAL POPULATION BIOLOGY, 1990, 38 (02) :219-232
[5]  
Gihman II, 1972, STOCHASTIC DIFFERENT
[6]  
HARSANYI JC, 1988, GENERAL THEORY EQUIL
[7]  
Hofbauer J., 1988, THEORY EVOLUTION DYN
[8]  
KANDORI M, 1991, LEARNING MUTATION LO
[9]  
Skorohod A.V., 1989, ASYMPTOTIC METHODS T
[10]  
YOUNG HP, 1991, GAME ECON BEHAV, V3, P145, DOI 10.1016/0899-8256(91)90010-C