A NONLINEAR KLEIN-GORDON EQUATION

被引:193
作者
SCOTT, AC
机构
[1] Department of Electrical Engineering, The University of Wisconsin, Madison
关键词
D O I
10.1119/1.1975404
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
A simple nonlinear partial differential equation suitable for study by an undergraduate in applied science is discussed. Several physical realizations are outlined and the construction of an analog model is described. The equation is analyzed to determine nonlinear pulse and periodic waveforms, and the stability of these waveforms is investigated using a recently developed “averaged Lagrangian” technique. © 1969, American Association of Physics Teachers. All rights reserved.
引用
收藏
页码:52 / &
相关论文
共 26 条
[1]  
Briggs R.J., 1964, ELECTRON STREAM INTE
[2]  
DORING W, 1948, Z NATURFOR, V31, P373
[3]   SELF-DETECTION OF AC JOSEPHSON CURRENT [J].
ECK, RE ;
TAYLOR, BN ;
SCALAPINO, DJ .
PHYSICAL REVIEW LETTERS, 1964, 13 (01) :15-+
[4]   DISCRETE MASS, ELEMENTARY LENGTH, AND A TOPOLOGICAL INVARIANT AS A CONSEQUENCE OF A RELATIVISTIC INVARIANT VARIATIONAL PRINCIPLE [J].
ENZ, U .
PHYSICAL REVIEW, 1963, 131 (03) :1392-&
[5]  
FEYNMAN RP, 1960, LECTURES PHYSIC 3 ED
[6]  
Goldstein H., 1950, CLASSICAL MECHANICS
[7]  
JEFFREY A, 1964, NONLINEAR WAVE PROPA, pCH1
[8]   SUPERCURRENTS THROUGH BARRIERS [J].
JOSEPHSO.BD .
ADVANCES IN PHYSICS, 1965, 14 (56) :419-&
[9]   *THEORIE DER VERSETZUNGEN IN EINDIMENSIONALEN ATOMREIHEN .1. PERIODISCH ANGEORDNETE VERSETZUNGEN [J].
KOCHENDORFER, A ;
SEEGER, A .
ZEITSCHRIFT FUR PHYSIK, 1950, 127 (05) :533-550
[10]  
KOCHENDORFER A, 1951, Z PHYS, V130, P321