ACTIVATION OF P53 SEQUENCE-SPECIFIC DNA-BINDING BY SHORT SINGLE STRANDS OF DNA REQUIRES THE P53 C-TERMINUS

被引:359
作者
JAYARAMAN, L
PRIVES, C
机构
[1] Department of Biological SciencesColumbia University New York
关键词
D O I
10.1016/S0092-8674(05)80007-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Upon cellular DNA damage, the p53 tumor suppressor protein transmits a signal to genes that control the cell cycle and apoptosis. One function of p53 that is important for its role in this pathway is its ability to function as a sequence-specific transcriptional activator. We demonstrate here that short single DNA strands can markedly stimulate the ability of human and murine p53 proteins to bind specifically to a p53 response element in supercoiled DNA. We also show that single-stranded DNA does not stimulate binding by a truncated p53 that lacks the C-terminal domain. Finally, we establish that a peptide spanning the p53 C-terminus has the ability in trans to stimulate sequence-specific DNA binding by p53 dramatically. These data taken together suggest a model in which the p53 C-terminus can recognize DNA structures resulting from damage-induced lesions, and this interaction can be propagated to regulate positively p53 sequence-specific DNA binding.
引用
收藏
页码:1021 / 1029
页数:9
相关论文
共 45 条
[1]   P53 BINDS SINGLE-STRANDED-DNA ENDS THROUGH THE C-TERMINAL DOMAIN AND INTERNAL DNA SEGMENTS VIA THE MIDDLE DOMAIN [J].
BAKALKIN, G ;
SELIVANOVA, G ;
YAKOVLEVA, T ;
KISELEVA, E ;
KASHUBA, E ;
MAGNUSSON, KP ;
SZEKELY, L ;
KLEIN, G ;
TERENIUS, L ;
WIMAN, KG .
NUCLEIC ACIDS RESEARCH, 1995, 23 (03) :362-369
[2]   P53 BINDS SINGLE-STRANDED-DNA ENDS AND CATALYZES DNA RENATURATION AND STRAND TRANSFER [J].
BAKALKIN, G ;
YAKOVLEVA, T ;
SELIVANOVA, G ;
MAGNUSSON, KP ;
SZEKELY, L ;
KISELEVA, E ;
KLEIN, G ;
TERENIUS, L ;
WIMAN, KG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (01) :413-417
[3]   SITE-SPECIFIC BINDING OF WILD-TYPE-P53 TO CELLULAR DNA IS INHIBITED BY SV40-T ANTIGEN AND MUTANT P53 [J].
BARGONETTI, J ;
REYNISDOTTIR, I ;
FRIEDMAN, PN ;
PRIVES, C .
GENES & DEVELOPMENT, 1992, 6 (10) :1886-1898
[4]   A PROTEOLYTIC FRAGMENT FROM THE CENTRAL REGION OF P53 HAS MARKED SEQUENCE-SPECIFIC DNA-BINDING ACTIVITY WHEN GENERATED FROM WILD-TYPE BUT NOT FROM ONCOGENIC MUTANT P53-PROTEIN [J].
BARGONETTI, J ;
MANFREDI, JJ ;
CHEN, XB ;
MARSHAK, DR ;
PRIVES, C .
GENES & DEVELOPMENT, 1993, 7 (12B) :2565-2574
[5]  
BRAIN R, 1994, ONCOGENE, V9, P1775
[6]   INTERACTIONS BETWEEN P53 AND MDM2 IN A MAMMALIAN-CELL CYCLE CHECKPOINT PATHWAY [J].
CHEN, CY ;
OLINER, JD ;
ZHAN, QM ;
FORNACE, AJ ;
VOGELSTEIN, B ;
KASTAN, MB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (07) :2684-2688
[7]   COOPERATIVE DNA-BINDING OF P53 WITH TFIID (TBP) - A POSSIBLE MECHANISM FOR TRANSCRIPTIONAL ACTIVATION [J].
CHEN, XB ;
FARMER, G ;
ZHU, H ;
PRYWES, R ;
PRIVES, C .
GENES & DEVELOPMENT, 1993, 7 (10) :1837-1849
[8]   CRYSTAL-STRUCTURE OF A P53 TUMOR-SUPPRESSOR DNA COMPLEX - UNDERSTANDING TUMORIGENIC MUTATIONS [J].
CHO, YJ ;
GORINA, S ;
JEFFREY, PD ;
PAVLETICH, NP .
SCIENCE, 1994, 265 (5170) :346-355
[9]   HIGH-RESOLUTION STRUCTURE OF THE OLIGOMERIZATION DOMAIN OF P53 BY MULTIDIMENSIONAL NMR [J].
CLORE, GM ;
OMICHINSKI, JG ;
SAKAGUCHI, K ;
ZAMBRANO, N ;
SAKAMOTO, H ;
APPELLA, E ;
GRONENBORN, AM .
SCIENCE, 1994, 265 (5170) :386-391
[10]  
DLIC V, 1994, CELL, V76, P1013