TESTING FOR 2ND-ORDER STOCHASTIC-DOMINANCE OF 2 DISTRIBUTIONS

被引:88
作者
KAUR, A
RAO, BLSP
SINGH, H
机构
[1] INDIAN STAT INST,203 BARRACKPORE TRUNK RD,CALCUTTA 700035,W BENGAL,INDIA
[2] PANJAB UNIV,CHANDIGARH 160014,INDIA
关键词
D O I
10.1017/S0266466600008884
中图分类号
F [经济];
学科分类号
02 ;
摘要
A distribution function F is said to stochastically dominate another distribution function G in the second-order sense if integral-x/-infinity F(u) du less-than-or-equal-to integral-x/-infinity G(u) du, for all x. Second-order stochastic dominance plays an important role in economics, finance, and accounting. Here a statistical test has been constructed to test H0: integral-x/-infinity F(u) du less-than-or-equal-to integral-x/-infinity G(u) du, for some x is-an-element-of [a, b], against the hypothesis H1:integral-x/-infinity F(u) du > integral-x/-infinity G(u) du, for all x is-an-element-of [a, b], where a and b are any two real numbers. The test has been shown to be consistent and has an upper bound alpha on the asymptotic size. The test is expected to have usefulness for comparison of random prospects for risk averters.
引用
收藏
页码:849 / 866
页数:18
相关论文
共 19 条
[1]  
[Anonymous], 1957, SOME ASPECTS MULTIVA
[2]  
Bawa V. S., 1975, J FINANC ECON, V2, P95, DOI DOI 10.1016/0304-405X(75)90025-2
[3]   EFFICIENT ALGORITHM TO DETERMINE STOCHASTIC-DOMINANCE ADMISSIBLE-SETS [J].
BAWA, VS ;
LINDENBERG, EB ;
RAFSKY, LC .
MANAGEMENT SCIENCE, 1979, 25 (07) :609-622
[4]  
BERGER RL, 1984, J AM STAT ASSOC, V79, P158
[5]   TESTS AND CONFIDENCE SETS FOR COMPARING 2 MEAN RESIDUAL LIFE FUNCTIONS [J].
BERGER, RL ;
BOOS, DD ;
GUESS, FM .
BIOMETRICS, 1988, 44 (01) :103-115
[6]  
Billingsley P, 1968, CONVERGENCE PROBABIL
[7]  
CHUNG KL, 1968, COURSE PROBABILITY T
[8]  
Csorgo M., 1981, STRONG APPROXIMATION
[9]   TESTING FOR 2ND ORDER STOCHASTIC-DOMINANCE [J].
DESHPANDE, JV ;
SINGH, H .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1985, 14 (04) :887-893
[10]  
DESHPANDE JV, 1981, 3RD P ANN C IND SOC